Zooplankton densities collected from a seasonally hypoxic fjord (Hood Canal, Salish Sea, USA) on 2012-2013 cruises

Sampling event
最新版本 published by United States Geological Survey on 1月 16, 2024 United States Geological Survey

下載最新版本的 Darwin Core Archive (DwC-A) 資源,或資源詮釋資料的 EML 或 RTF 文字檔。

DwC-A資料集 下載 345 紀錄 在 English 中 (467 KB) - 更新頻率: 無計畫更新
元數據EML檔 下載 在 English 中 (36 KB)
元數據RTF文字檔 下載 在 English 中 (14 KB)

說明

This zooplankton dataset was collected as part of a larger study examining the effects of hypoxia on species composition, distributions, and predator-prey interactions between zooplankton and fish in a pelagic marine ecosystem. Day/night paired zooplankton sampling was conducted in Hood Canal, Puget Sound (Washington state, US), during 10 monthly cruises from June to October, 2012 and 2013, at five stations: Dabob, Union, Hoodsport, Duckabush and Twanoh. An obliquely towed multi-net system was used to collect depth stratified and full water column samples. For the depth-stratified sampling, depth layers were based on the dissolved oxygen profiles from CTD casts. In the laboratory, zooplankton were quantitatively subsampled and microscopically counted, with zooplankton densities calculated. All individuals were identified to species or larger taxonomic grouping, and by life stages for some species, within each sample. This dataset as published with OBIS incorporates corrections and updates to a dataset previously published on BCO-DMO.

資料紀錄

此資源sampling event的資料已發佈為達爾文核心集檔案(DwC-A),其以一或多組資料表構成分享生物多樣性資料的標準格式。 核心資料表包含 345 筆紀錄。

亦存在 2 筆延伸集的資料表。延伸集中的紀錄補充核心集中紀錄的額外資訊。 每個延伸集資料表中資料筆數顯示如下。

Event (核心)
345
ExtendedMeasurementOrFact 
7666
Occurrence 
6853

此 IPT 存放資料以提供資料儲存庫服務。資料與資源的詮釋資料可由「下載」單元下載。「版本」表格列出此資源的其它公開版本,以便利追蹤其隨時間的變更。

版本

以下的表格只顯示可公開存取資源的已發布版本。

如何引用

研究者應依照以下指示引用此資源。:

Keister J E, Essington T, Horne J K, Parker-Stetter S, Herrmann B, Li L, Mayorga E, Winans A (2024). Zooplankton densities collected from a seasonally hypoxic fjord (Hood Canal, Salish Sea, USA) on 2012-2013 cruises. Version 1.2. United States Geological Survey. Samplingevent dataset. https://doi.org/10.15468/a7upu6

權利

研究者應尊重以下權利聲明。:

此資料的發布者及權利單位為 United States Geological Survey。 This work is licensed under a Creative Commons Attribution (CC-BY 4.0) License.

GBIF 註冊

此資源已向GBIF註冊,並指定以下之GBIF UUID: 5944ffd0-ba6f-413b-8414-54433a4f2d1e。  United States Geological Survey 發佈此資源,並經由GBIF-US同意向GBIF註冊成為資料發佈者。

關鍵字

Samplingevent; Specimen; WASHINGTON; COASTAL; ZOOPLANKTON

聯絡資訊

Julie E. Keister
  • 元數據提供者
  • 出處
  • 連絡人
  • 研究主持人
Professor
University of Washington
US
Timothy Essington
  • 出處
  • 研究主持人
Professor
University of Washington
US
John K. Horne
  • 出處
  • 研究主持人
Professor
University of Washington
US
Sandra Parker-Stetter
BethElLee Herrmann
Lingbo Li
  • 出處
Fisheries Biologist
Fisheries and Oceans Canada
CA
Emilio Mayorga
  • 元數據提供者
  • 出處
  • 處理者
Senior Oceanographer
University of Washington
US

地理涵蓋範圍

Hood Canal in Puget Sound, Washington State, USA. Puget Sound is part of the Salish Sea.

界定座標範圍 緯度南界 經度西界 [47.371, -123.125], 緯度北界 經度東界 [47.812, -122.807]

分類群涵蓋範圍

N/A

Kingdom Animalia
Phylum Chordata, Mollusca, Arthropoda, Annelida, Cnidaria, Bryozoa
Class Hydrozoa, Bivalvia, Ostracoda, Copepoda, Thecostraca, Larvacea, Polychaeta, Malacostraca, Gastropoda
Order Trachymedusae, Calanoida, Siphonophorae, Euphausiacea, Pteropoda, Cyclopoida
Family Metridinidae, Paracalanidae, Corycaeidae, Euphausiidae, Calanidae, Oithonidae, Diphyidae, Clausocalanidae, Oncaeidae, Rhopalonematidae, Limacinidae, Centropagidae, Acartiidae

時間涵蓋範圍

起始日期 / 結束日期 2012-06-11 / 2013-10-04

計畫資料

Low dissolved oxygen (hypoxia) is one of the most pronounced, pervasive, and significant disturbances in marine ecosystems. Yet, our understanding of the ecological impacts of hypoxia on pelagic food webs is incomplete because of our limited knowledge of how organism responses to hypoxia affect critical ecosystem processes. In pelagic food webs, distribution shifts of mesozooplankton and their predators may affect predator-prey overlap and dictate energy flow up food webs. Similarly, hypoxia may induce shifts in zooplankton community composition towards species that impede energy flow to planktivorous fish. However, compensatory responses by species and communities might negate these effects, maintaining trophic coupling and sustaining productivity of upper trophic level species. To address the question "Does hypoxia affect energy flow from mesozooplankton to pelagic fish?", this study used a nested framework of hypotheses that considered two sets of processes alternatively responsible for either changes or maintenance of pelagic ecosystem energy flows. Improved understanding of how hypoxia impacts marine ecosystems will benefit the practical application of ecosystem-based management (EBM) in coastal and estuarine ecosystems. Effective application of EBM requires that the impacts of human activities are well understood and that ecological effects can be tracked using indicators. This project will contribute to both of these needs. The PIs and other study participants shared their findings on local and national levels with Federal, State, Tribal, and County biologists.

計畫名稱 Consequences of hypoxia on food web linkages in a pelagic marine ecosystem
辨識碼 PelagicHypoxia
經費來源 Funding Source: NSF Division of Ocean Sciences; Award Number: OCE-1154648
研究區域描述 The study was conducted in Hood Canal, Washington state. Unlike most hypoxia-impacted estuaries, hypoxic regions of Hood Canal are in close proximity to sites that are not affected by hypoxia. This makes it logistically easier to conduct a comparative study and reduces the number of potential confounding factors when comparing areas that are far apart.
研究設計描述 The project included multiple research cruises resulting in multiple datasets. A full list of datasets can be found at: https://www.bco-dmo.org/project/557504

參與計畫的人員:

Julie E. Keister

取樣方法

We conducted day/night paired zooplankton sampling in Hood Canal in June-October, 2012 and 2013. Sampling stations included Dabob, Union, Hoodsport, Duckabush, and Twanoh. A Hydrobios MultiNet (five-net capacity) was used to collect depth-stratified and full water column samples. Net mouth area was 0.25 m2; 200- and 335-um mesh nets were used to sample different size zooplankton. Nets were towed obliquely at 1-2.5 knots (slower tows for smaller mesh size), with inner and outer flow meters to measure water volume sampled. For the depth-stratified sampling, depth layers were based on the dissolved oxygen profiles from CTD casts. In the laboratory, zooplankton were quantitatively subsampled and microscopically counted. All individuals were identified to species or larger taxonomic grouping, and by life stages for some species, within each sample.

研究範圍 Sampling conducted at 5 stations in Hood Canal, Puget Sound, Washington state, US. These stations are Dabob, Union, Hoodsport, Duckabush, and Twanoh. Day and night paired sampling took place during 10 monthly cruises from June to October, 2012 and 2013, spanning the period from 2012-06-11 to 2013-10-04.

方法步驟描述:

  1. The starting point data file for OBIS Darwin Core alignment was obtained from a previous data submission to BCO-DMO available at doi:10.1575/1912/bco-dmo.682074.1. After downloading the file in csv format from the BCO-DMO ERDDAP server (https://erddap.bco-dmo.org/erddap/tabledap/bcodmo_dataset_682074.csv), we performed the following revisions and corrections, based on more recent information from the PI's lab: - Assigned the correct timezone: PDT (local time, UTC-7), rather than UTC. - Populated missing times for 6 sampling events. - Corrected multiple life history stage entries. - Updated or corrected several taxa assignments. - Corrected a zooplankton density value. - Identified duplicate entries where only the zooplankton density values differed. In such cases, reduced the duplicates to single entries (17) with the mean density from the duplicate pairs.

引用文獻

  1. Li, L., J.E. Keister, T.E. Essington and J. Newton. 2019. Vertical distributions and abundances of life stages of the euphausiid Euphausia pacifica in relation to oxygen and temperature in a seasonally hypoxic fjord. Journal of Plankton Research 41(2): 188–202, doi:10.1093/plankt/fbz009 https://doi.org/10.1093/plankt/fbz009
  2. Moriarty, P. E., T. E. Essington, J. K. J. E. Horne, Keister, L. Li, S. L. Parker-Stetter, and M. Sato. 2020. Unexpected food web responses to low dissolved oxygen in an estuarine fjord. Ecological Applications 30(8):e02204. doi:10.1002/eap.2204 https://doi.org/10.1002/eap.2204

額外的詮釋資料

The publication of this dataset in OBIS was supported by the Northwest Association of Networked Ocean Observing Systems (NANOOS, https://www.nanoos.org), the Regional Association of the national US Integrated Ocean Observing System (IOOS, https://ioos.noaa.gov) for the US Pacific Northwest.

替代的識別碼 5944ffd0-ba6f-413b-8414-54433a4f2d1e
https://ipt-obis.gbif.us/resource?r=uwph_hoodcanalzoop